Learning to Transduce with Unbounded Memory

Edward Grefenstette Karl Moritz Hermann Mustafa Suleyman Phil Blunsom

Three New Continuous Memories

Unbounded continuous memories simulating
stacks, queues, and double-ended queues can
be connected to recurrent networks of any topol-
ogy to aid with transduction, record keeping, and
other algorithmic tasks.

Example Operation of a Neural Stack
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Neural Stack Schematics
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Convergence and Data Efficiency

Separate models trained for each task.
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Memory-enhanced models generalise better than deep LSTMs.
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Transduction Task Accuracies

Evaluated on held-out sequences from training (sequence length range: 8—64)
and test (sequence length range: 65—128) data sources.

Picking the wrong memory reduces memory-enhanced LSTM to LSTM.
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