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An Identity Crisis in NLP?

L. yoav goldberg
T ©yoavgo

This new wave of "we solved all of language
with neural-nets” papers is not a step
forward but back to naive 1960s-style Eliza-
like work.
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Today's Topics

Sequence-to-Sequence Modelling with RNNs
Transduction with Unbounded Neural Memory

Machine Reading with Attention

e OO DR

Recognising Entailment with Attention
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Some Preliminaries: RNNs

e Recurrent hidden layer
outputs distribution over
next symbol

e Connects "back to itself"

e Conceptually: hidden
layer models history of
the sequence.
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Some Preliminaries: RNNs

1

Outputs e RNNs fit variable width
problems well

Unfold to feedforward
nets with shared weights
e Can capture long range
dependencies

Hard to train (exploding /
vanishing gradients)
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Some Preliminaries: LSTM RNNs

Network state determines
when information is read
in/out of cell, and when cell
Is emptied.




Some Preliminaries: Deep RNNs

Outputs

e RNNSs can be layered:
output of lower layers is
input to higher layers

e Different interpretations:
higher-order patterns,
memory

e Generally needed for

i harder problems
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Conditional Generation
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Conditional Generation
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Transduction and RNNs

Many NLP (and other!) tasks are castable as transduction problems. E.g.:
Translation: English to French transduction
Parsing: String to tree transduction

Computation: Input data to output data transduction
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Transduction and RNNs

Generally, goal is to transform some source sequence
S — 81 82 e o » Sm

into some target sequence

T = tity. .. 1,
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Transduction and RNNs

Approach:

1. Model P(t,.[t....t ;' S) with an RNN
2. Read in source sequences

3. Generate target sequences (greedily, beam search, etc).
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Encoder-Decoder Model

e Concatenate source and target sequences into joint sequences:

S, S

8,8 Ittt

e Train a single RNN over joint sequences
e Ignore RNN output until separator symbol (e.g. "|||")

e Jointly learn to compose source and generate target sequences
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Deep LSTMs for Translation

Target sequence

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Source sequence

(Sutskever et al. NIPS 2014)
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Learning to Execute

Task (Zaremba and Sutskever, 2014):

e Read simple python scripts character-by-character

e Output numerical result character-by-character.

Input:
j=8584
for x in range(8):
J+=920
b=(1500+7)
print ((b+7567))
Target: 25011.

Input:

i=8827

c=(1-5347)

print ((c+8704) if 2641<8500 else 5308)
Target: 12184.
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The Transduction Bottleneck
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Today's Topics

Sequence-to-Sequence Modelling with RNNs
Transduction with Unbounded Neural Memory

Machine Reading with Attention
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Recognising Entailment with Attention
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Solution: Unbounded Neural Memory

We introduce memory modules that act like Stacks/Queues/DeQues:

e Memory "size" grows/shrinks dynamically
e Continuous push/pop not affected by number of objects stored
e Can capture unboundedly long range dependencies”

e Propagates gradient flawlessly”

(* if operated correctly: see paper's appendix)
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stack grows upwards

Example: A Continuous Stack

row 3

row 2

row 1

t=2 u,=01 d,=05

t=3 u,=09 d,=09
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r,=0.8-v,

b Google DeepMind

r,=05-v,+0.5-v,

r,=09 -v,+0-v,+ 0.1 -v,

v, removed
from stack



Example: A Continuous Stack

© next values (V)

prev. values (v, )

previous state
——

prev. strengths (s,_,)
push (d))

input pop (UJ-_

[
| value {VI! r
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Neural
Stack

next state

next strengths (s)

output (r)
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Controlling a Neural Stack

A..

Neural
2 "e{ Stack
N

/ \ ) T
input —/ output
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Synthetic Transduction Tasks

Copy

Reversal

Bigram Flipping

a,a,a,a,..a_.a —a

18,353,.. da.d,d,...d ad

2717473 " "nn-1

6 Google DeepMind General Artificial Intelligence



Synthetic ITG Transduction Tasks

Subject-Verb-Object to Subject-Object-Verb Reordering

Si1 vi28 0i5 0i7 si15 rpi si19 vi16 0i10 0i24 — so1 005 007 s015 rpo so019 vo16 0010 0024 vo28
Genderless to Gendered Grammar

wel1 the en19 and the em17 — wg11 das gn19 und der gm17
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Coarse- and Fine-Grained Accuracy

e Coarse-grained accuracy
Proportion of entirely correctly predicted sequences in test set
e Fine-grained accuracy

Average proportion of sequence correctly predicted before first error
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Results

Experiment Stack Queue DeQue Deep LSTM
Copy Poor Solved Solved Poor
Reversal Solved Poor Solved Poor
Bigram Flip Converges Best Results Best Results Converges
SVO-SOV Solved Solved Solved Converges
Conjugation Converges Solved Solved Converges

Every Neural Stack/Queue/DeQue that solves a problem preserves the solution for
longer sequences (tested up to 2x length of training sequences).
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Rapid Convergence

10 Top model fine-grained training (Bigram Flipping) 10 Top model fine-grained training (Geder Conjugatlon)

?
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AV, —— 2-layer LSTM —— 2-layer LSTM
0.4 —— 4-layer LSTM —— 4-layer LSTM
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0.2 DeQue DeQue
—— Queue —— Queue
—— Stack —— Stack
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Today's Topics

Sequence-to-Sequence Modelling with RNNs
Transduction with Unbounded Neural Memory

Machine Reading with Attention

-l o A

Recognising Entailment with Attention
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Natural Language Understanding

Read text
Synthesise its information

Reason on basis of that information

= W N =

Answer questions based on steps 1-3

We want to build models that can read text and
answer questions based on them! So far we are very good at step 1!
For the other three steps we first need to solve the data bottleneck

General Artificial Intelligence

6 Google DeepMind



Data (I) — Microsoft MCTest Corpus
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Data (II) — Facebook Synthetic Data
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A new source for Reading Comprehension data
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Large-scale Supervised Reading Comprehension
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One catch: Avoid the Language Model trap
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Anonymisation and permutation

Carefully designed problem to avoid shortcuts such as QA by LM:
= We only solve this task if we solve it in the most general way possible:

The easy way ...

(CNN) New Zealand are on course
for a first ever World Cup title after a
thrilling semifinal victory over South
Africa, secured off the penultimate
ball of the match.

Chasing an adjusted target of 298 in
just 43 overs after a rain interrupted
the match at Eden Park, Grant Elliott
hit a six right at the death to confirm
victory and send the Auckland crowd
into raptures. It is the first time they
have ever reached a world cup final.

b Google DeepMind

Question:
reach cricket Word Cup
final?

Answer:
New Zealand

... Our way

(ent23) ent7 are on course for a first
ever ent15 title after a thrilling

semifinal victory over ent34, secured
off the penultimate ball of the match.

Chasing an adjusted target of 298 in
just 43 overs after a rain interrupted
the match at ent12, ent17 hit a six
right at the death to confirm victory
and send the ent83 crowd into
raptures. It is the first time they have
ever reached a ent15 final.

Question:
reach ent3 ent15 final?

Answer:
ent7



Get the data now!

www.github.com/deepmind/rc-data

or follow "Further Details" link under the paper's entry on

www.deepmind.com/publications
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Baseline Model Results

CNN Daily Mail
valid test wvalid test
Maximum frequency 263 279 225 227
Exclusive frequency 308 326 273 27.7
Frame-semantic model 32.2 33.0 30.7 31.1
Word distance model 46.2 46.9 55.6 54.8
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Neural Machine Reading

/ \ The Deep LSTM Reader

We estimate the probability of

word type a from document d E. E.E‘E*E‘E\
answering query q: E—E—»
p(ald, q) ocexp (W(a)g(d. q)). E» é é é E}E» é é

st. a€ d.
visited England ||| Mary went to England

where W(a) indexes row a of W
and g(d,q) embeds of a
document and query pair.

(& /
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Achtung!

/ \ The Attentive Reader

We can improve on this using

an attention model over a
bidirectional LSTM ./
e Separate encodings for

query and context tokens S(%f \8‘3”‘3) &
e Attend over context | | |

token encodings | | |
e Predict based on joint

weighted attention and I T )

query representation

(& /
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Impatience can be a virtue

4 N

We developed a nice iterative
extension to the Attentive
Reader as follows
e Read query word by word
e Attend over document at
each step through query
e |teratively combine
attention distribution
e Predict answer with
increased accuracy

(& /
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The Impatient Reader

Mary went to England X visited England




Impatience is a virtue - Results

Q Google DeepMind

CNN Daily Mail

valid test valid test
Maximum frequency 26.3 279 225 22.7
Exclusive frequency 308 326 27.3 27.7
Frame-semantic model 32.2 33.0 30.7 31.1
Word distance model 46.2 46.9 55.6 54.8
Deep LSTM Reader 490 499 57.1 57.3
Uniform attention 31.1 336 31.0 31.7
Attentive Reader 56.5 58.9 64.5 63.7
Impatient Reader 57.0 60.6 64.8 63.9




The Attentive Reader - Correct Example

by ent40 ,ent62 correspondent updated 9:49 pm et ,thu march 19,2015 (ent62 ) a ent88 was killedin a parachute
accidentinent87 ,ent28 ,near ent66 ,a ent47 official told en{62 on wednesday . he was identified thursday as special
warfare operator Srd..I ent-stinguished himself consistently throughout his
career .he was the epitome of the quiet professionalin all facets of his life ,and he leaves aninspiring legacy of natural
tenacity andfocused commitment for posterity ," the ent47 said in a news release .ent49 joined the seals in september
after enlisting inthe ent47 two years earlier .he was married ,the ent47 said .initialindications are the parachute failed

to open during a jump as part of a training exercise .ent49 was part of a ent57 -based ent88 team .

ent47 identifies deceased sailor as X ,who leaves behind a wife
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The Attentive Reader - Failed Prediction

by ent37 ,ent61updated11:44amet ,tue march 10,2015 (ent61) a suicide attacker detonated a car bomb near a

police vehicle inthe capital of southen.msday ,killing seven people andinjuring 23 others ,the
province 's deputy governor said .the attack happenedat about 6 p.m.“ity ,said ent66 ,

deputy governor of ent24 .several children were amongthe wounded ,and the majority of casualties were civilians ,

ent66 said .details about the attacker 's identity and motive were n'timmediately available .

car bomb detonated near police vehicle in X ,deputy governor says
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was discoverad an southbound sige of the Dallas North Tolhway



http://www.youtube.com/watch?v=0sXsceI7h_c

[

A driver was caught in the



http://www.youtube.com/watch?v=wW-G0xlxYew

Today's Topics

Sequence-to-Sequence Modelling with RNNs
Transduction with Unbounded Neural Memory

Machine Reading with Attention
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Recognising Entailment with Attention
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Recognizing Textual Entailment (RTE)

A man is crowd surfing at a concert

- The man is at a football game
- The man is drunk

- The manis at a concert

A wedding party is taking pictures

- Thereis a funeral
- They are outside

- Someone got married

6 Google DeepMind

Contradiction
Neutral

Entailment

Contradiction
Neutral

Entailment

General Artificial Intelligence
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Stanford Natural Language Inference Corpus

Project on RTE while working with SICK corpus
(Marelli et al., SemEval 2014)

The last 1.5 months of Tim's internship, with the
SNLI corpus (Bowman et al., EMNLP 2015)

10k sentence pairs, partly synthetic 570k sentence pairs from Mechanical Turkers
EMNLP 2015 “best data set or resource” award!
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1 A A A 2 1 * A A i, = o(WH + b?)
¢ —{co l—f 3 —>] ey — e5 —a g |—{ c7 —{ ey —i g f, =oc(W/H+b/)

0, = o(W°H + b°)
+ * * * + * * * + C; = ff, @ Ci_1 —+ ii @ taﬂh{WLH + bLJ
X1 X2 X3 X4 X5 X6 X7 X3 X9 h; = o; ® tanh(c;).
A wedding party taking pictures :: Someone got married

Premise Hypothesis
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Attention (Bahdanau et al., 2014; Mnih et al., 2014)

M = tanh(WYY + W"hy ® er)

a = softmax(w’ M)

1 2—>{C3 C4 Cs Ce6 —>{C7 Cs Ll e ¥er.
) ) ) £ ) ) £ ) r
X1 X2 X3 X4 X5 X6 X7 X8 X9
A wedding party taking pictures : Someone got married
Premise Hypothesis
b Google DeepMind General Artificial Intelligence
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Word Matching

Hypothesis: A boy is riding an animal.

boy

rides

on
camel .

in

a

crowded

Premise

area

while

talking

on

his

cellphone.

Hypothesis: A woman with a hat holding a poster.

woman

wearing

white

baseball
cap

Premise

purple

coat

holding

poster.
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Spotting Contradictions

Hypothesis: A girl is wearing a blue jacket.

Hypothesis: Two dogs swim in the lake.

Premise
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Premise

Hypothesis: Two mimes sit in complete silence.
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Fuzzy Attention

Hypothesis: Two men are dancing.

(@) [ © [ A4 (@) ('_U wn [ ((v]
= Q Q = @] c = + o
= - o S O C ©
Q O ] ©
e @) E
O ©
| -
o
Premise

gym

floor.
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Word-by-Word Attention (Hermann et al. 201 5)

A A 2 A i) L) ? 4 A M, = tanh(W¥Y + (W"h, + W'r,_;) ® e;)
cil—slcol—slesl—slcs l—fcs —lcg —slcr —sles —sleq a; = softmax(w” M)
ry = YC!EE -+ taﬂh(wtl';’_]_).
A 4 A ) A L) A A A
X1 X9 X3 X4 X5 X6 X7 Xg X9
A wedding party taking pictures : Someone got married
Premise Hypothesis
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Word Matching and Synonyms

I

A

young
boy
and

sisayjodAH

an
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Words and Phrases

is
a
child
with

There
their

foot

in

a

can
near
some
other
kids
in

garbage

SIsaylodAH

classroom.
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Reordering

Hypothesis

A

girl

is
sitting
on
stone
steps
in

a

pink
tank
top
with
her
boyfriend.

<

qgirl

in

pink

y

Y O O E
525
-

Premise

boyfriend

sitting
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-
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Snow is outside

il

are

People
outside.
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Premise
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Results

Model k Olwem |0l Train Dev  Test
LSTM [Bowman et al., 2015] 100 =~ 10M 221k 844 - 77.6
Classifier [Bowman et al., 2015] - - - 99.7 - 78.2
LSTM shared 100 3.8M 111k 83.7 819 80.9
LSTM shared 159 3.9M 252k 844 83.0 814
LSTMs 116 3.9M 252k 83.5 82.1 809
Attention 100 3.9M 242k 854 832 823
Attention two-way 100 3.9M 242k  86.5 83.0 824
Word-by-word attention 100 3.9M 252k 85.3 83.7 835
Word-by-word attention two-way 100 3.9M 252k 86.6 83.6 &3.2
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Thanks for listening!

Learning to Transduce with Unbounded Memory (NIPS 2015)
Grefenstette et al. 2015, arXiv:1506.02516 [cs.NE]

Teaching-Machines to Read and Comprehend (NIPS 2015)
Hermann et al. 2015, arXiv:1506.03340 [cs.CL]

Reasoning about Entailment with Neural Attention (upcoming)
Rocktaschel et al. 2015, arXiv:1509.06664 [cs.CL]
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